Plurisubharmonic functions and subellipticity of the $\bar\partial$-Neumann problem on non-smooth domains

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Remark on Irregularity of the ∂-neumann Problem on Non-smooth Domains

It is an observation due to J.J. Kohn that for a smooth bounded pseudoconvex domain Ω in C there exists s > 0 such that the ∂-Neumann operator on Ω maps W s (0,1)(Ω) (the space of (0, 1)-forms with coefficient functions in L -Sobolev space of order s) into itself continuously. We show that this conclusion does not hold without the smoothness assumption by constructing a bounded pseudoconvex dom...

متن کامل

The ∂̄-neumann Operator on Lipschitz Pseudoconvex Domains with Plurisubharmonic Defining Functions

On a bounded pseudoconvex domain in C with a plurisubharmonic Lipschitz defining function, we prove that the ∂̄-Neumann operator is bounded on Sobolev (1/2)-spaces. 0. Introduction LetD be a bounded pseudoconvex domain in C with the standard Hermitian metric. The ∂̄-Neumann operator N for (p, q)-forms is the inverse of the complex Laplacian = ∂̄ ∂̄∗ + ∂̄∗∂̄ , where ∂̄ is the maximal extension of the C...

متن کامل

The Strong Oka’s Lemma, Bounded Plurisubharmonic Functions and the ∂̄-neumann Problem

The classical Oka’s Lemma states that if Ω is a pseudoconvex domain in C, n ≥ 2, then − log δ is plurisubharmonic where δ is some distance function to the boundary. Let M be a complex hermitian manifold with the metric form ω. Let Ω be relatively compact pseudoconvex domain in M . We say that a distance function δ to the boundary bΩ satisfies the strong Oka condition if it can be extended from ...

متن کامل

The Neumann Problem on Lipschitz Domains

Au — 0 in D; u = ƒ on bD9 where ƒ and its gradient on 3D belong to L(do). For C domains, these estimates were obtained by A. P. Calderón et al. [1]. For dimension 2, see (d) below. In [4] and [5] we found an elementary integral formula (7) and used it to prove a theorem of Dahlberg (Theorem 1) on Lipschitz domains. Unknown to us, this formula had already been discovered long ago by Payne and We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 1997

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.1997.v4.n4.a2